assessment of the effect of input factors number in accuracy of artificial neural network for landslide hazard zonation (case study: haraz watershed)

نویسندگان

حمیدرضا مرادی

دانشیار دانشکده منابع طبیعی، دانشگاه تربیت مدرس، ایران علیرضا سپهوند

کارشناسی ارشد آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، ایران پرویز عبدالمالکی

استادیار دانشکده علوم پایه دانشگاه تربیت مدرس، ایران

چکیده

more than 30% of iran's land is formed from mountainous areas. so each year, landslides cause damages to structures, residential areas and forests, creating sedimentation, muddy floods and finally deposit the sediments in reservoir dams. therefore, for preventing of this damages and expressing the sensitivity rate of hillslopes, landslide hazard zonation is considered in prone areas. the purpose of this study is to determine the optimal structure of artificial neural network with different numbers of input factors for the landslide hazard zonation in the haraz watershed. first, the number of optimal epochs was determined to prevent network overlearning with trial and error method. then, 14 neurons were determined in the hidden layer. finally, the number of neurons was changed from 1 to 9 in the input layer. according to the obtained results, with increasing the number of neurons in the input layer, efficiency of artificial neural network improved for landslide susceptibility mapping. in this research, nine neurons in the input layer, 14 neurons in the hidden layer and one neuron in the output layer were selected as the optimal structure. root mean square error and descriptive coefficient (r2) were equal to 0.051 and 0.962, respectively and the accuracy of landslide hazard zonation map was equal to 92.3%. meanwhile, the results showed that about 35.14, 26.73, 14.59, 9.88, and 13.63 percent of all studied areas are located in stable, low, moderate, high and extremely hazardous areas, respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour

this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...

the effect of consciousness raising (c-r) on the reduction of translational errors: a case study

در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...

15 صفحه اول

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

the effect of traffic density on the accident externality from driving the case study of tehran

در این پژوهش به بررسی اثر افزایش ترافیک بر روی تعداد تصادفات پرداخته شده است. به این منظور 30 تقاطع در شهر تهران بطور تصادفی انتخاب گردید و تعداد تصادفات ماهیانه در این تقاطعات در طول سالهای 89-90 از سازمان کنترل ترافیک شهر تهران استخراج گردید و با استفاده از مدل داده های تابلویی و نرم افزار eviews مدل خطی و درجه دوم تخمین زده شد و در نهایت این نتیجه حاصل شد که تقاطعات پر ترافیک تر تعداد تصادفا...

15 صفحه اول

Landslide hazard zonation using artificial neural network model downstream of Sanandaj Dam

Extended abstract 1- Introduction     Landslide as a morphological risk factor is the result of the operation of natural and environmental factors that, like other morphological irregularities, causes damage to human facilities, infrastructure, and property. One of the most significant works of geomorphology is the identification of stable landforms and places with minimal potential for catas...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
مرتع و آبخیزداری

جلد ۶۵، شماره ۲، صفحات ۲۳۱-۲۴۳

کلمات کلیدی
more than 30% of iran's land is formed from mountainous areas. so each year landslides cause damages to structures residential areas and forests creating sedimentation muddy floods and finally deposit the sediments in reservoir dams. therefore for preventing of this damages and expressing the sensitivity rate of hillslopes landslide hazard zonation is considered in prone areas. the purpose of this study is to determine the optimal structure of artificial neural network with different numbers of input factors for the landslide hazard zonation in the haraz watershed. first the number of optimal epochs was determined to prevent network overlearning with trial and error method. then 14 neurons were determined in the hidden layer. finally the number of neurons was changed from 1 to 9 in the input layer. according to the obtained results with increasing the number of neurons in the input layer efficiency of artificial neural network improved for landslide susceptibility mapping. in this research nine neurons in the input layer 14 neurons in the hidden layer and one neuron in the output layer were selected as the optimal structure. root mean square error and descriptive coefficient (r2) were equal to 0.051 and 0.962 respectively and the accuracy of landslide hazard zonation map was equal to 92.3%. meanwhile the results showed that about 35.14 26.73 14.59 9.88 and 13.63 percent of all studied areas are located in stable low moderate high and extremely hazardous areas respectively.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023